Using case-based reasoning as a reinforcement learning framework for optimisation with changing criteria
نویسندگان
چکیده
Practical optimization problems such as job-shop scheduling often involve optimization criteria that change over time. Repair-based frameworks have been identi ed as exible computational paradigms for difcult combinatorial optimization problems. Since the control problem of repair-based optimization is severe, Reinforcement Learning (RL) techniques can be potentially helpful. However, some of the fundamental assumptions made by traditional RL algorithms are not valid for repair-based optimization. Case-Based Reasoning (CBR) compensates for some of the limitations of traditional RL approaches. In this paper, we present a Case-Based Reasoning RL approach, implemented in the CABINS system, for repair-based optimization. We chose job-shop scheduling as the testbed for our approach. Our experimental results show that CABINS is able to e ectively solve problems with changing optimization criteria which are not known to the system and only exist implicitly in a extensional manner in
منابع مشابه
Using Case-Based Reasoning as a Reinforcement Learning framework for Optimization with Changing Criteria
Practical optimization problems such as job-shop scheduling often involve optimization criteria that change over time. Repair-based frameworks have been identi ed as exible computational paradigms for di cult combinatorial optimization problems. Since the control problem of repair-based optimization is severe, Reinforcement Learning (RL) techniques can be potentially helpful. However, some of t...
متن کاملImproving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning
In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...
متن کاملRecognizing the Enemy: Combining Reinforcement Learning with Strategy Selection Using Case-Based Reasoning
This paper presents CBRetaliate, an agent that combines Case-Based Reasoning (CBR) and Reinforcement Learning (RL) algorithms. Unlike most previous work where RL is used to improve accuracy in the action selection process, CBRetaliate uses CBR to allow RL to respond more quickly to changing conditions. CBRetaliate combines two key features: it uses a time window to compute similarity and stores...
متن کاملHyperILS: An Effective Iterated Local Search Hyper-heuristic for Combinatorial Optimisation
Two powerful ideas from search methodologies, iterated local search and hyperheuristics, are combined into a simple and effective framework to solve combinatorial optimisation problems (HyperILS). Iterated local search is a simple but successful algorithm. It operates by iteratively alternating between applying a move operator to the incumbent solution and restarting local search from the pertu...
متن کاملLow-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach
This paper presents the application of reinforcement learning in automatic analog IC design. In this work, the Multi-Objective approach by Learning Automata is evaluated for accommodating required functionalities and performance specifications considering optimal minimizing of MOSFETs area and power consumption for two famous CMOS op-amps. The results show the ability of the proposed method to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995